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Experimental section:

Materials Used. 5- Amino isophthalic acid, and 1,3,5-benzenetricarbonyl trichloride were bought
from Sigma-Aldrich. Poly(methyl methacrylate) was bought from tokyo chemical industry. 4-
Dimethylaminopyridine was purchased from Sisco Research Laboratories (SRL). All the metal
salts and solvents were purchased from Central Drug House (CDH) and utilized without further
purification. The solvents N,N-dimethyl sulfoxide (DMSO), N, N-dimethylacetamide (DMA) and

tetrahydrofuran (THF) were used without further distillation.

Characterization. Malvern Panalytical Empyrean diffractometer (with A = 1.5418 A, Cu Ka
radiation) was utilized for powder X-ray diffraction (PXRD) measurement. The morphology of
the luminescent CPGs was explored by the ZEISS GEMINISem500 field emission scanning
electron microscope attached to an EDX spectroscopy detector. To record the SEM images, a small
amount of dried form of CPGs (i.e., xerogels) was sprinkled onto a double-sided carbon tape
mounted onto an aluminium SEM stub. The as-synthesized luminescent materials were further
studied through a transmission electron microscope (a JEOL-JEM-F200) operating at 200 kV. To
record the TEM images, a minimal amount of xerogel was dispersed in 1 mL ethanol, subsequently
sonicated for 30 min, and then xerogel containing ethanol drop-casted on a TEM grid. The MCR
302-Anton Paar rheometer was used for rheological studies. To confirm the gel property of the as-
synthesized luminescent CPGs, the storage modulus (G') and loss modulus (G”) values were
obtained against angular frequency and shear strain on a 9 mm diameter parallel plate at room
temperature. FTIR analysis was carried out by PerkinElmer spectrum 400 in ATR mode. The
UV-—vis spectra were recorded by Shimadzu UV2500 spectrophotometer. Thermogravimetric
analysis was performed under a nitrogen atmosphere at a scan rate of 10 °C/min by SDT Q600

(TA Instruments). A Horiba TCSPC spectrometer equipped with a picosecond pulsed diode laser

S4



and an MCP-PMT detector was used to record time-resolved photoluminescence data for
Th@BTT and after adding TNP in the To@BTT. Edinburg FSP 920 Instrument was used for

measuring lifetime of the EU@BTT and Eub@BTT CPGs.

Recyclability test. After each cycle of the sensing experiment, the material was washed multiple
times with tetrahydrofuran, followed by acetone to remove the dissolved TNP and NP from the
dispersed solution. The xerogel material was collected through filtration. Prior to reuse, the

obtained material after filtration was kept in a vacuum oven at 50 °C for 12 h.
Methods:
Quenching efficiency was calculated with help of the following equation, expressed by

(1 - (I/IO)) X100% ...oooveoreereoeeeeereeen(EQ-S1)

Stern-VVolmer equation was utilized for the quantitative analysis of the quenching analysis, which

is expressed as,

The low detection of limit was calculated using 36/k equation (where o = standard deviation of
repetitive blank measurements and k is the slope of the line) where Ky, is the Stern-VVolmer (S-
V) constant or quenching effect coefficient (M), and the molar concentration of the quencher is

denoted by Q.1
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Quantum yield measurement:

Here, we have utilized the Parker-Rees method? to calculate the quantum yield of the
prepared luminescent materials, using a 0.5 M H2SO4 solution of quinine sulphate as a standard

reference. The formula for this calculation is provided as follows:

P = (AranszlAs Frnrz) () (Eq-S3)

In this equation, ®r represents the quantum yield of the quinine sulfate reference solution,
while ®s represents the quantum yield of the sample. The absorbance maxima were kept under 0.1
to minimize the reabsorption of fluorescent light that passed through the materials. The values of
Ar and As correspond to the absorbance of the reference and sample, respectively, whereas Fr and
Fs refer to the integrated area of fluorescence intensity for the reference and sample, respectively.
The refractive indices of the reference and sample are represented by nr and ns, respectively.® Table

S1 contains the relevant photophysical parameters and quantum yield values.

Table S1. Photophysical parameters of the as-synthesized materials and Quinine Sulfate,

required for quantum yield calculation

Sl Sample Name Excitation Absorbance Area of Quantum
No. Wavelength Aex (A) Integrated Yield (@)
(nm) Fluorescence
Intensity (F)
1 Quinine Sulphate 310 0.095 2.254E8 0.540
2 Th@BTT 321 0.071 5.044E7 0.175
3 Eu@BTT 321 0.048 9.110E6 0.047
4 EuTb@BTT 321 0.055 2.242E7 0.100
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Excited State Calculation: All the theoretical calculations were performed with the help of Density
Functional Theory (DFT), by using the Gaussian 16 package of programs. The molecular geometry of BTT
ligand was optimized using B3LYP functional in conjunction with 6-31+G(d,p) basis set, as shown in
Figure S7. The impact of solvent was not taken into account to match the solid-state experimental setting.
Based on the optimized singlet ground state geometry, the energy of the triplet excited state of BTT ligand

was calculated to be 30068 cm™ using the time-dependent DFT (TDDFT) approach.
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Figure S1. Strain sweep vs storage modulus (G') and loss modulus (G") of (a) Tb@BTT, and (b)
EuTb@BTT. Angular frequency sweep vs storage modulus (G') and loss modulus (G") of (c)

Th@BTT, and (d) EUTh@BTT.
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Figure S2. FTIR spectra of BTT, EU@BTT, Th@BTT and EUTb@BTT xerogels.
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Figure S3. TGA analysis of To@BTT and EuTh@BTT materials.

S8



C Kal 2 0 Kal

P —
S
Th Lal

L

N Kal 2

(c)

P

ik

Sy

Figure S4. (a-d) The elemental dot mapping analysis of Tb@BTT, and (e) the EDX analysis of

Tb@BTT material.
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Figure S6. The EDX analysis of EuTb@BTT xerogel.
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Figure S8. XPS survey of (a) EUTb@BTT, the deconvoluted peaks of (b) Eu 3d, (c) Tb 3d, and

(c) C 1s for EUTb@BTT.
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Figure S9. Schematic illustration of the energy transfer process from ligand-to-metal.
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Figure S10. Lifetime decay profile of Tb@BTT and Eu@BTT and EuTb@BTT.
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Figure S11. The encrypted information by stamping after four months (under exposure to UV

light).
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Figure S12. Stamping on different surfaces; (a) paper, (b) packaging foam and (d) glass slide.
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Figure S13. Stability check of the encrypted information in the different condition: liquid nitrogen
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temperature, high temperature (at 100 °C for 12 h) and in the open atmosphere. presence of

different solvents (under exposure to UV light).
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Figure S14. Stability check of the encrypted information in the presence of different solvents

(under exposure to UV light).
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Figure S15. The luminescence spectra of To@BTT xerogel in different solvents.
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Figure S17. Luminescence spectrum of Tb@BTT in the presence of different analytes (a) o-
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Figure S19. Fluorescence kinetic study in presence of different volume of (a) TNP (10 mM), and

(b) NP (10 mM).
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Figure S20. TNP sensing through fluorescence titration method (a) Eu@BTT, and (b)

EuTb@BTT. NP sensing through fluorescence titration method (c) Eu@BTT, and (d)
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Figure S21. The S-V plot for TNP of (a) Eu@BTT, and (b) EuTb@BTT materials. The LOD

calculation of TNP (c) EuU@BTT and (d) EuTb@BTT.

S22



(1)

1.30

1251
_ 1.20-
1.154
1.10 4
1.054

1.00 4

C
G(Sx)w’ 4 = y=204 E9+142E8
R%=0.9673
3 ;|
36.6)(10
> .
£
v
= | |
. .
£6.3x10°4
Eu@BTT
6.0x10°

1 Eu@BTT

A0S Mt ARl
Comcontration of £ NP M}

0.00000 0.00002 0.00004 0.00006 0.00008
Concentration of NP (M)

0.00000 0.00001 0.00002 0.00003 0.00004
Concentration of NP (M)

(b) 20

141

L= )

Kgy=66« 107!
ECTEE

1.0 EuTb@BTT|
0.00000 0.00003 0.00006
Concentration of NP (M)
(d) y=754E9 +1.77 E8
R?=0.9916
3.6x10% 4
3
82.7x10% 4
2
w
&
£ 1.8x10° 4
0.00000 0.00001 0.00002 0.00003 0.00004
Concentration of NP (M)

Figure S22. The S-V plot for NP quenching of (a) Eu@BTT, and (b) EuTb@BTT materials. The

LOD calculation of NP (¢c) Eu@BTT and (d) EuTb@BTT.

S23



~2L_ Th@BTT/PMMA thin-film
8 Th@BTT/PMMA thin-film in water (30 min)

Intensity (a.u.)

400 450 500 550 600
Wavelength (nm)

Figure S23. Luminescence spectrum of To@BTT/PMMA thin-film in (a) Solid-state and (b) in

the presence of water.
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Figure S24. Luminescence spectrum of To@BTT/PMMA thin-film in (a) water and (b) in the

presence of TNP.

S25



G

(a) IRF —— Emission intensity of TO@BTT
—— 4Nitrophenol
Aniiine |
; —— Benzoic acid !
i3 ——— 2-Aminophenol
{ Phenol
—— Trinitrophenol
p-Toluidine

Counts (a.u.)
Absorbance (a.u.)

| ==
\,- e

Emission Intensity (a.u.)

Time (ms) Wavelength (nm)

Figure S25. (a) Time-resolved photoluminescence spectra of Th@BTT without TNP (green) and
with TNP (blue). (b) Absorption spectra of different organic analytes and emission spectra of
Th@BTT.
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